Skip to main content

Advertisement

Log in

Complete microbe free processed porcine xenograft for clinical use

  • Published:
Indian Journal of Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

Background

Xenogenic organ replacement from pig to human is a possibility provided sterility and immunogenicity are taken care of. The objective of this study was to check the sterility of processed porcine pulmonary xenografts to mark them ‘safe’ for clinical application, without the threat for xenozoonoses.

Methods

A total of 148 porcine pulmonary valve conduits were screened pre and post processing for bacterial, fungal and viral contamination. The bacterial and fungal contaminants such as Candida species, filamentous fungus, yeast like organisms, gram negative bacteria and porcine endogenous retrovirus (PERV) were isolated from the preprocessed porcine conduits. These harvested conduits were collected in a cocktail of antimicrobials and Hanks balanced salt solution. Next, they were subjected to ‘processing’ i.e., made completely acellular, strong and biocompatible in all respects. Finally, sterility checks were carried out for bacterial, fungal and viral (PERV) contamination.

Result

Microbial evaluation performed in this study revealed that the porcine pulmonary conduits were made ‘microbe free’ on subjecting to the special staged decellularization technique.

Conclusion

The porcine xenograft conduit processed in the laboratory, which has an added advantage of numbers and sizes, can replace the gold standard homograft safely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sodian R, Hoerstrup SP, Sperling JS, et.al. Tissue engineering of heart valves: in vitro experiences. Ann Thorac Surg 2000; 70: 140–144.

    Article  PubMed  CAS  Google Scholar 

  2. Takeuchi Y, Magre S, Patience C. The potential hazards of xenotransplantation an over view. Rev SciTech off Int Epiz 2005; 24: 323–334.

    CAS  Google Scholar 

  3. Pitkin Z, Mullon C. Evidence of absence of poricine endogenous retrovirus (PERV) infection in patients treated with a bioartificial liver support system. Artif Organs 1999; 23: 829–833.

    Article  PubMed  CAS  Google Scholar 

  4. Ericsson TA, Takeuchi Y, Templin Cet.al. Identification of receptors for pig endogenous retrovirus. Proc Natl Acad Sci U.S.A. 2003; 100: 6759–6764.

    Article  PubMed  CAS  Google Scholar 

  5. Magre S, Takeuchi Y, Bartosch B. Xenotransplantation and pig endogenous retroviruses. Rev Med Virol 2003; 13: 311.

    Article  PubMed  Google Scholar 

  6. Martin U, Winkler ME, Id M, et al. Productive infection of primary human endothelial cells by pig endogenous retrovirus (PERV). Xenotransplantation 2000; 7: 138–142.

    Article  PubMed  CAS  Google Scholar 

  7. Carabello BA, Crawford FA. Jr Valvular heart disease. N Engl J Med 1997; 337: 32–41.

    Article  PubMed  CAS  Google Scholar 

  8. Nugent HM, Edelman ER. Tissue engineering therapy for cardiovascular disease. Circ Res 2003; 92: 1068–1078.

    Article  PubMed  CAS  Google Scholar 

  9. Bader A, Schilling T, Teebken OE, et al. Tissue engineering of heart valves — human endothelial cell seeding of detergent acellularised porcine valves. Eur J Sur 1998; 14: 279–284.

    CAS  Google Scholar 

  10. Pfaller M, Houston A, Coffmann S. Application of CHROM Agar for rapid screening of clinical specimens for Candida albicans, Candida tropicalis, Candida Krusei and Candida (torulopsis) glabrata. J Clin Microbiol 1996; 34: 58–61.

    PubMed  CAS  Google Scholar 

  11. Baily W Robert and Glvyn G Scott (1994). Diagnostic Microbilogy Book, 9th edition, A text book for the isolation and identification of pathogenic microgranism. Page 66.

  12. Myer R, Koshi G. Manual of Diagnostic procedures in Medical Microbiology and Immunology / Serology: (All India Press, Pondicherry) 1982; 50–52

    Google Scholar 

  13. Harris J L. Modified methods for fungal slide culture. J Clin Microbiol 1986; 24: 460–461.

    PubMed  CAS  Google Scholar 

  14. Herring C, Quinn G, Bower R, et al. Mapping full-length porcine endogenous retroviruses in a large white pig. J Virol 2001; 75: 12252–12265.

    Article  PubMed  CAS  Google Scholar 

  15. Bartosch B, Stefanidis D, Myers R, Weiss R, Patience C, Takeuchi Y. Evidence and consequence of porcine endogenous retrovirus recombination. J Virol 2004; 78: 13880–13890.

    Article  PubMed  CAS  Google Scholar 

  16. Blusch JH, Patience C, Takeuchi Y, et al. Infection of non human primate cells by Pig endogenous retrovirus. J Virol 2000; 74: 7687–7690.

    Article  PubMed  CAS  Google Scholar 

  17. Irgang M, Karlas A, Lave C, et al. Porcine endogenous retrovirous PERV-A and PERV-B infect neither mouse cells in vitro nor SCID mice in vivo. Intervirology 2005; 48: 167–173.

    Article  PubMed  Google Scholar 

  18. Martina Y, Marcucci K T, Chergui S, et al. Mice transgenic for a human Porcine endogenous retrovirus receptor are susceptible to productive viral infection. J Virol 2006; 80: 3135–3146.

    Article  PubMed  CAS  Google Scholar 

  19. Dinsmore JH, Manhart C, Raineri R, Jacoby DB, Moore A. No evidence for infection of human cells with porcine endogenous retrovirus (PERV) after exposure to porcine fetal neuronal cells. Transplantation 2000; 70: 1382–1389.

    Article  PubMed  CAS  Google Scholar 

  20. Grauss RW, Hazekamp MG, Oppenhuizen F, et al. Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods. Eur J Cardiothorac Surg 2005; 27: 566–571.

    Article  PubMed  Google Scholar 

  21. Fiddler GI, Gerlis LM, Walker DR, Scott O, Williams GJ. Calcification of hutaraldehyde — preserved porcine and bouine xenograft valves in young Children. Ann Thoracic Surgery 1983; 35: 257–261.

    Article  CAS  Google Scholar 

  22. Guhathakurta S, Verghese S, Balasubramanian V, et al. Technique to process xenogenic tissues for cardiovascular implantation — A preliminary report. Current Science 2006; 91: 1068–1073.

    CAS  Google Scholar 

  23. Vyavahare N, Hirsch D, Lerner E. Prevention of bioprosthetic heart valve calcification by ethanol preincubation. Efficacy and mechanisms Circulation 1997; 95: 479–488.

    PubMed  CAS  Google Scholar 

  24. Clark JN, Ogle MF, Ashworth P, Bianco RW, Levy RJ. Prevention of calcification of bioprosthetic heart valve cusp and aortic wall with ethanol and aluminium chloride. Ann Thorac Surg 2005; 79: 897–904.

    Article  PubMed  Google Scholar 

  25. Hodde J, Hiles M. Various safety of a porcine — derived medical device: Evaluation of a viral inactivation method. Biotechnol Bioeng 2002; 79: 211–216.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soma Guhathakurta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balasundari, R., Gupta, R., Sivasubramanian, V. et al. Complete microbe free processed porcine xenograft for clinical use. Indian J Thorac Cardiovasc Surg 23, 240–245 (2007). https://doi.org/10.1007/s12055-007-0049-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12055-007-0049-y

Key words

Navigation